Loading...

segunda-feira, 29 de agosto de 2016

Por que obedecemos ordens?

Obedecemos, seguimos e damos ordens muitas vezes até sem perceber. Há leis, regras de trânsito, conselhos morais e espirituais, determinações do chefe e tantas outras situações em que prevalece mando e obediência. Numa dessas relações é fácil imaginar motivos para alguém desejar comandar – como sede de status, vantagens materiais ou satisfação da vaidade. Pode ser mais interessante, contudo, pensar no que leva alguém a obedecer sem fazer questionamentos – ou pelo menos estranhar essa conjuntura. O sociólogo alemão Max Weber deu algumas respostas a essa questão. No início do século 20 ele estudou as relações de dominação, a qual definiu como “probabilidade de encontrar obediência a determinada ordem”. O que mais lhe interessava nessas relações era o sentido dado à ação de obedecer por aqueles que se submetiam às ordens.
Podem existir motivações para a obediência com base no medo, no afeto, num costume arraigado ou no cálculo das vantagens de ser conivente com o dominador. Mas a dominação construída sobre esses alicerces pode ser instável. De acordo com Weber, as relações de mando-obediência tornam-se mais estáveis quando o sujeito que segue as determinações alheias o faz por acreditar que esta é a coisa certa a fazer. Em outras palavras, a dominação é mais estável quando o dominado acredita na legitimidade do motivo de sua obediência. Três fundamentos são identificados pelo sociólogo para a dominação ser considerada legítima por aqueles que acatam e cumprem as ordens.
Existem os casos em que a motivação é a crença na legitimidade das ordenações e dos poderes senhoriais existentes há muito tempo. Obedece-se por fidelidade, sem questionamentos, porque se acredita que o estado das coisas foi daquele jeito desde sempre. Mas as ordens não podem ser aleatórias. Seu conteúdo está “santificado” pela tradição, embora haja um limite nas ações de quem manda, entre as partes determinadas pela tradição, pelo seu arbítrio e graça, podendo esta última ser influenciada por simpatias pessoais. Exemplo desse tipo de relação, chamada de dominação tradicional, é a autoridade dos pais de família nas relações patriarcais.

Outra razão para  considerar as ordens de uma pessoa como legítimas é a devoção afetiva a ela ou a crença em seus dons (como faculdades mágicas, abertura para revelações místicas, demonstrações de heroísmo, poder intelectual ou alta capacidade de convencimento pelo discurso). Encontramos esse tipo de relação entre grandes oradores, guerreiros ou líderes religiosos e seus séquitos. Mas a dominação embasada no carisma é tão extracotidiana que dificilmente se mantém sozinha por muito tempo.
Mais estável é a chamada dominação legal. Nela, uma pessoa não é obedecida por uma qualidade sua, mas pelo cargo que ocupa. Na verdade, o que realmente é obedecido é uma regra estatuída. A ideia básica, nesse tipo de relação, é que qualquer direito pode ser criado ou modificado mediante um estatuto correto. Correspondem a esse tipo de dominação a estrutura do Estado, as empresas capitalistas e toda associação moderna que dispõe de um numeroso e hierarquizado quadro de funcionários (os burocratas). Mas nenhum desses tipos de dominação existe de forma isolada dos demais. Hitler, por exemplo, era aprovado por boa parte dos alemães por causa de seu discurso carismático, mas comandou uma burocracia que a muitos parecia legítima por ter sido criada legalmente e de modo racional; mas também era obedecido porque havia mecanismos de violência para reprimir quem o contrariasse.

segunda-feira, 22 de agosto de 2016

Neuroimmunology: Immune cells on the brain

By Kristen Mueller, John Travis, Pamela J. Hines

Illustration between immune cell and neuron.
Until recently, many scientists viewed immune cells and the central nervous system (CNS) as a deadly mix. A classic example is multiple sclerosis, where T lymphocytes, together with other inflammatory mediators, damage the protective myelin sheath that encases nerve fibers in the brain and spinal cord. Decades of research on this autoimmune disorder opened a window into how the immune system and the CNS interact, but more recent research efforts have revealed the exceptionally broad scope of communication between the two. We now know that the immune system is very likely a key player in many neurological diseases and, surprisingly, that immune-CNS interactions may not all be bad. 
The immune system’s reach within the CNS is extensive, probably contributing to the initiation and pathogenesis of neurodegenerative diseases, neurodevelopmental disorders such as autism, and mental health disorders such as schizophrenia. Disease-driving mechanisms vary and include, among others, the pruning of neuronal synapses, effects on CNS development in utero, and inflammation. Although immune cells can clearly be a liability, they are likely also essential for normal brain development and function and for recovery from trauma. 
These exciting revelations place neuroimmunology at the forefront of biomedical research priorities. With the potential to affect such a diverse array of neurological ailments, many of which have no known therapy, the hope is that an improved understanding of immune-CNS interactions will bring to light new paradigms for preventing and treating neurological disease

sexta-feira, 19 de agosto de 2016

23 Signs You're Secretly a Narcissist Masquerading as a Sensitive Introvert

If I see one more listicle about introversion, I'm going to cry.
It started out with the fairly reasonable "31 Unmistakable Signs That You're An Introvert." Sure, many of the items on the list offered an exaggerated version of introversion, but there were some real gems that had a large grain of truth. Like this one:
But then this happened:
"HE OFTEN WEARS HEADPHONES WITH NO MUSIC PLAYING, IN THE HOPES NO ONE WILL TRY AND TALK TO HIM."
You'd think that'd be enough for a lifetime of listicles. But no... they kept coming, mixing together many different traits under the general umbrella "introversion." For instance, some lists include shyness-reated behaviors, but it's well documented that shyness is not the same thing as introversion. Shyness is more related to being anxious and neurotic. There are plenty of introverts who prefer alone time but really aren't anxious or shy when interacting with other people.
Another common misconception perpetuated by these listicles is that introversion and sensory processing sensitivity are the same thing. From "23 Signs You're Secretly An Introvert":
"While extroverts tend to get bored easily when they don't have enough to do, introverts have the opposite problem -- they get easily distracted and overwhelmed in environments with an excess of stimulation."
Actually, sensory processing sensitivity is not the same thing as introversion. There are plenty of socially introverted folks who can deal with loud sounds and bright lights, even though they may get emotionally drained from too many superficial social interactions. Vice versa, there are plenty of socially extraverted individuals who get overstimulated by sensory input. A number of studies support that idea that sensory processing sensitivity is much more strongly linked to anxiety (neuroticism) and openness to experience than introversion.
But when I saw this listicle, I just about flipped my lid:
Really? Let's clarify something here: Narcissism is definitely not the same thing as introversion.
Have you ever met someone who constantly tells you how "sensitive" and "introverted" they are, but all you actually see is selfishness and egocentricity? I'm sure you have, because these people exist in spades.
When most people think of narcissism, they think of thepublic face of narcissism: extraversion, aggression, self-assuredness, grandiosity, vanity, and the need to be admired by others (see "How to Spot a Narcissist"). But as far back as 1938, Harvard psychologistHenry Murray noticed another breed of narcissist among his undergraduates: the covert narcissist. While the "overt" narcissists tended to be aggressive, self-aggrandizing, exploitative, and have extreme delusions of grandeur and a need for attention, "covert" narcissists were more prone to feelings of neglect or belittlement, hypersensitivity, anxiety, and delusions of persecution.
In the 90s, psychologist Paul Wink analyzed a variety of narcissism scales and confirmed that there are indeed two distinct faces of narcissism, which they labeled "Grandiosity-Exhibitonism" and "Vulnerability-Sensitivity". He found that both shades of narcissism shared a common core of conceit, arrogance, and the tendency to give in to one's own needs and disregard others. But that's where the similarities ended.
While Grandiosity-Exhibitionism was associated with extraversion, aggressiveness, self-assuredness, and the need to be admired by others, Vulnerability-Sensitivity was associated with introversion, hypersensitivity, defensiveness, anxiety, and vulnerability. Further research by Jonathan Cheek and Jennifer Odessa Grimes at Wellesley College found a moderate correlation between covert narcissism and theHighly Sensitive Person Scale developed by Elaine Aron.
In other words, while introversion, sensitivity, and narcissism are all partially separate traits, hypersensitive covert narcissists are more likely to report that they are introverted and sensitive.
Are You a Covert Narcissist?
By this point, you're probably wondering if you're secretly a hypersensitive covert narcissist masquerading as a sensitive introvert. Without further ado, here are 23 items that will allow you to gain greater insight into your personality. In a recent study conducted on a group of 420 undergraduates, Jonathan Cheek and colleagues found that higher scorers on this "Maladaptive Covert Narcissism Scale" tended to also score higher on tests of entitlement, shame, and neuroticism, and tended to display lower levels of self esteem, extraversion, agreeableness, and conscientiousness. In contrast, maladaptive overt narcissism wasn't related to shame, self esteem, or neuroticism, even though overt narcissists reported feeling just as entitled as covert narcissists. It seems if you have to be a narcissist, it's better to be an overt narcissist than a covert narcissist!
So here's the test. Be honest with yourself!
Maladaptive Covert Narcissism Scale (MCNS)*
Please answer the following questions by deciding to what extent each item is characteristic of your feelings and behavior. Fill in the blank next to each item by choosing a number from this scale:
1 = very uncharacteristic or untrue, strongly disagree
2 = uncharacteristic
3 = neutral
4 = characteristic
5 = very characteristic or true, strongly agree
  1. ___ I can become entirely absorbed in thinking about my personal affairs, my health, my cares or my relations to others.
  2. ___ My feelings are easily hurt by ridicule or the slighting remarks of others.
  3. ___ When I enter a room I often become self-conscious and feel that the eyes of others are upon me.
  4. ___ I dislike sharing the credit of an achievement with others.
  5. ___ I feel that I have enough on my hand without worrying about other people's troubles.
  6. ___ I feel that I am temperamentally different from most people.
  7. ___ I often interpret the remarks of others in a personal way.
  8. ___ I easily become wrapped up in my own interests and forget the existence of others.
  9. ___ I dislike being with a group unless I know that I am appreciated by at least one of those present.
  10. ___ I am secretly "put out" or annoyed when other people come to me with their troubles, asking me for their time and sympathy.
  11. ___ I am jealous of good-looking people.
  12. ___ I tend to feel humiliated when criticized.
  13. ___ I wonder why other people aren't more appreciative of my good qualities.
  14. ___ I tend to see other people as being either great or terrible.
  15. ___ I sometimes have fantasies about being violent without knowing why.
  16. ___ I am especially sensitive to success and failure.
  17. ___ I have problems that nobody else seems to understand.
  18. ___ I try to avoid rejection at all costs.
  19. ___ My secret thoughts, feelings, and actions would horrify some of my friends.
  20. ___ I tend to become involved in relationships in which I alternately adore and despise the other person.
  21. ___ Even when I am in a group of friends, I often feel very alone and uneasy.
  22. ___ I resent others who have what I lack.
  23. ___ Defeat or disappointment usually shame or anger me, but I try not to show it.
Done? Now add together all the numbers to come up with a total score.
How'd you do?
If you thought on some each of these, "Oh dear lord, that's sooooo me," don't panic. As I mentioned, there's some overlap between this scale and other tests that measure introversion and sensitivity. In a recent study conducted on college students, the average score on this scale was in the mid-upper 60s. So if your score hovered around that range, you're about average in covert narcissism. If your score was below 40, you scored verylow in covert narcissism.
If, however, your score was 82 and above, you scored high in covert narcissism. And if your score was above 97, well, you might want to own yourself as a card-carrying covert narcissist, instead of constantly telling people to stop criticizing you because your sensitive, introverted soul can't handle it.
Now, do genuinely introverted people exist? Absolutely. Are there genuinely sensitive people? For sure. There are even many individuals who are both sensitive and introverted.
But the latest research suggests that there is also a large selfish segment of the population who say they are introverted and sensitive when they really just can't stand it that everyone doesn't recognize their brilliance.
With that said, whoever bans the word "listicle" from the English lexicon is genuinely brilliant, regardless of their shade of narcissism.
© 2013 Scott Barry Kaufman, All Rights Reserved
* The first 10 items of this scale are taken from the original Hypersensitive Narcissism Scale. The rest of the items were added to create a more reliable and valid scale. This new and improved 23-item scale was recently presented at the 2013 Association for Research in Personality conference by Jonathan Cheek, Holly Hendin, and Paul Wink.
Note: Even though Kanye West sings songs such as "I Am A God," I admit it's possible that he is actually the reverse of the focus of my article: a sensitive introvert masquerading as a narcissist. I don't know him personally.
image credit of Kanye West: ballerstatus.com
The views expressed are those of the author(s) and are not necessarily those of Scientific American.

Ruídos auxiliam o funcionamento do cérebro

Na maioria dos casos, o ruído é considerado um incômodo e costuma causar problemas de saúde quando somos expostos a ele por muito tempo. A novidade é que sob condições específicas pode fazer nosso cérebro funcionar melhor. Mais de uma década de investigação sugere que, sob algumas circunstâncias, uma pequena “injeção de ruído” é capaz de “afinar” a maneira pela qual um organismo percebe o ambiente, tornando-o mais sensível. Por exemplo, lagostas são mais eficientes em detectar os movimentos sutis de peixes predadores quando a água é turbulenta do que quando está calma. Os seres humanos são mais capazes de reconhecer uma imagem fraca em uma tela quando uma pitada de ruído é adicionada a ela. 


A maneira específica como se dá esse processo ainda está sendo estudada pelos cientistas, mas já existem algumas pistas.
Tanto no caso de crustáceos quanto no de pessoas que percebem as figuras, a fonte de ruído é externa ao organismo, mas os cientistas levantam uma possibilidade intrigante: a evolução pode nos ter ajudado a incorporar alguns ruídos que ajudariam no funcionamento do cérebro. Alguns neurocientistas acreditam que circuitos neurais das mais variadas espécies são “barulhentos desde a concepção”. Porém, isso não significa que esse som seja perceptível. O neurocientista Gero Miesenböck, pesquisador da Universidade de Oxford, descobriu um circuito cerebral, parte do sistema olfativo damosca-da-fruta-Drosophila, que existe especificamente para gerar ruído para melhorar o funcionamento do cérebro. Ele acredita que sua descoberta tem implicações para o cérebro humano, já que a arquitetura básica do sistema olfativo da Drosophila é comum não só para todos os insetos, mas também a todos os vertebrados – incluindo os seres humanos. Se Miesenböck e seus colegas estiverem certos, pode ser que essa produção de som seja uma característica mais comum na natureza do que julgávamos até recentemente.

Esta matéria foi publicada originalmente na edição de julho de Mente e Cérebro, disponível na Loja Segmento: http://bit.ly/29SXuYj  
Leia mais: 

Por que gritos atraem tanta atenção?
Existem áreas cerebrais especializadas em interpretá-los como sinal de perigo; estamos preparados, por exemplo, para captar o choro de uma criança mesmo em ambientes barulhentos

Ondas cerebrais de alta frequência garantem noites mais tranquilas
Fusos do sono são responsáveis por permanecermos adormecidos mesmo em locais barulhentos

Novos experimentos avançam estudo de doenças mentais

Nenhum órgão do corpo humano é tão difícil de ser estudado como o cérebro. Fazer uma biópsia cerebral costuma ser uma tarefa bem mais desafiadora que realizar o procedimento em tecido vivo do fígado, pulmão e coração, por exemplo. Essa dificuldade de observar células neurais em atividade dificulta os esforços da ciência para entender transtornos psiquiátricos do ponto de vista biológico. Porém, pesquisadores identificaram uma nova abordagem promissora, capaz de revolucionar o estudo e o tratamento de quadros como esquizofrenia, autismo e transtorno bipolar. 

Um grupo liderado por pesquisadores do Instituto Salk para Estudos Biológicos, em La Jolla, na Califórnia, transformou células da pele de um paciente com esquizofrenia em células-tronco adultas e, na sequência, promoveu o crescimento delas como neurônios. O enovelamento das células cerebrais resultante forneceu a primeira visão em tempo real da esquizofrenia humana em escala celular. Outro grupo de cientistas converteu células de pele humana diretamente em células nervosas sem passar pelo estágio intermediário de células-tronco, tornando o processo potencialmente mais eficiente. Os grupos publicaram seus resultados no periódico científico Nature.
Pesquisadores já haviam simulado a doença numa placa para compreender melhor as células em forma de foice da anemia e de arritmias cardíacas. Mas o grupo do Instituto Salk, liderado pelo neurocientista Fred H. Gage, foi o primeiro a aplicar a abordagem para um transtorno neuro-psiquiátrico geneticamente complexo. O grupo descobriu que neurônios originados de pacientes com esquizofrenia formaram menos conexões entre si em comparação a pessoas sem o diagnóstico. Os cientistas associaram esse déficit à expressão alterada de aproximadamente 600 genes, quatro vezes mais do que já havia sido estudado.
Apesar de a pesquisa ainda estar na fase preliminar, muitos neurocientistas estão otimistas. “Em princípio, a abordagem pode melhorar terapias, permitindo que os psiquiatras examinem diversas drogas para encontrar a mais eficaz para cada paciente”, avalia Gage. “O estudo abre espaço para uma infinidade de novas áreas de trabalho”, acredita Daniel Weinberger, diretor do Programa de Genética, Cognição e Psicose do Instituto Nacional de Saúde Mental dos Estados Unidos. Ainda não está claro que respostas e caminhos práticos a abordagem das células-tronco pode fornecer, mas o fato de tornar acessível o que parecia inalcançável anima médicos e cientistas e revela possibilidades que até agora sequer podiam ser consideradas.
Esta matéria foi publicada originalmente na edição de agosto de Mente e Cérebro, disponível na Loja Segmento: http://bit.ly/2bfD9N6 
Leia mais:

Primeiros sinais da esquizofrenia
Cada sintoma contribui para dar sentido a outros, com tempo e tratamento o paciente aprende a conviver com esse caminho

O que os novos neurônios fazemCientistas acreditam que que aumentar a produção de novas células cerebrais pode ajudar a fixar novas memórias e contribuir para reverter transtornos de ansiedade

terça-feira, 16 de agosto de 2016

Quanto tempo em média uma mulher consegue guardar um segredo?


Img - Quanto tempo em média uma mulher consegue guardar um segredo?



As mulheres sempre tiveram fama de fofoqueiras. Mas será que elas realmente não conseguem guardar segredos? Uma pesquisa feita na Inglaterra mediu o tempo limite que uma mulher aguenta guardar um segredo. Segundo o resultado do estudo, cada mulher repassa, em média, 3 segredos por semana. O número é bastante alto.

Ainda de acordo com a pesquisa, as mulheres geralmente contam um segredo para outras pessoas em menos de dois dias. Para ser mais exato, as mulheres conseguem guardar segredo pelo tempo médio de 47 horas e 15 minutos.

É claro que as mulhres vão dizer que a pesquisa está incorreta, mas os pesquisadores afirmam que 85% das mulheres gostam de ouvir segredos, mas não conseguem ficar seque 32 minutos sem repassá-los a terceiros.

As principais pessoas para quem as mulheres contam segredos com mais frequência são o parceiro, os amigos mais próximos e a mãe. Essas informação são do jornal Daily Mail.

O estudo analisou 3 mil mulheres. Desse número, uma em cada dez delas admitiu ser incapaz de guardar um segredo, mesmo quando é extremamente confidencial.

Além disso, quase metade das mulheres disse que sente necessidade de contar os segredos a alguém e 13% afirmaram que fazem isso para espalhar a informação.

Morphing neutrinos provide clue to antimatter mystery


Credit: The Asahi Shimbun Getty Images

Why the Universe is filled with matter, rather than antimatter, is one of physics’ greatest mysteries. An experiment in Japan has now glimpsed a possible explanation: subatomic particles called neutrinos might behave differently in their matter and antimatter forms.
The disparity, announced at the International Conference on High Energy Physics (ICHEP) in Chicago, Illinois, on 6 August, may turn out not to be real: more data will need to be gathered to be sure. “You would probably bet that this difference exists in neutrinos, but it would be premature to state that we can see it,” says André de Gouvêa, a theoretical physicist at Northwestern University in Evanston, Illinois.
Even so, the announcement is likely to increase excitement over studies of neutrinos, the abundant but elusive particles that seem increasingly key to solving all kinds of puzzles in physics.
In the 1990s, neutrinos were found to defy the predictions of physics' standard model — a successful, but incomplete, description of nature — by virtue of possessing mass, rather than being entirely massless. Since then, neutrino experiments have sprouted up around the world, and researchers are realizing that they should look to these particles for new explanations in physics, says Keith Matera, a physicist on a US-based neutrino experiment called NOvA at the Fermi National Accelerator Laboratory (Fermilab) in Batavia, Illinois. “They are the crack in the standard model,” he says.

AN ODD ABUNDANCE

The excess of matter over antimatter in our Universe is extraordinary, because if the mirror-image particles were produced in equal quantities after the Big Bang, they would have annihilated each other on contact, leaving nothing but radiation. Physicists have observed differences in the behaviour of some matter particles and antimatter particles, such as kaons and B mesons — but not enough to explain the dominance of matter in the Universe.
One answer might be that super-heavy particles decayed in the early Universe in an asymmetric fashion and produced more matter than antimatter. Some physicists think that a heavyweight relative of the neutrino could be the culprit. Under this theory, if neutrinos and antineutrinos behave differently today, then a similar imbalance in their ancient counterparts could explain the overabundance of matter.
To test this, researchers on the Tokai to Kamioka (T2K) experiment in Japan looked for differences in the way that matter and antimatter neutrinos oscillate between three types, or ‘flavours’, as they travel (see 'Changing flavours'). They shot beams of neutrinos of one flavour — muon neutrinos — from the Japan Proton Accelerator Research Complex in the seaside village of Tokaimura to the Super-Kamiokande detector, an underground steel tank more than 295 kilometres away and filled with 50,000 tons of water. The team counted how many electron neutrinos appeared — a sign that the muon neutrinos had morphed into a different flavour along the journey. They then repeated the experiment with a beam of muon antineutrinos.
The two beams behaved slightly differently, said Konosuke Iwamoto, a physicist at the University of Rochester, New York, during his presentation at ICHEP.

WEIRD OSCILLATIONS

The team expected that if there were no difference between matter and antimatter, their detector would have, after almost 6 years of experiments, seen 24 electron neutrinos and — because antimatter is harder to produce and detect — 7 electron antineutrinos.
Instead, they saw 32 neutrinos and 4 antineutrinos arrive in their detector. “Without getting into complicated mathematics, this suggests that matter and antimatter do not oscillate in the same way,” says Chang Kee Jung, a physicist at Stony Brook University in New York and a member of the T2K experiment.
Preliminary findings from the T2K and NOvA experiments had hinted at the same idea. But the observations so far could be a chance fluctuation; there is a 1 in 20 chance (or in statistical terms, about 2 sigma) of seeing these results if neutrinos and antineutrinos behave identically, points out Jung.
It will take much more data to confirm the signal. By the end of its current run in 2021, the T2K experiment should have five times more data than it has today. But the team will need 13 times more data to push statistical confidence in the finding to 3 sigma, a statistical threshold beyond which most physicists would accept the data as reasonable — but not completely convincing — evidence of the asymmetry.

TWO ARE BETTER THAN ONE

The T2K team has proposed extending its experiment to 2025 in order to gather the necessary data. But it is trying to speed up data-gathering by combining results with those from NOvA, which sends a neutrino beam 810 kilometres from Fermilab to a mine in northern Minnesota. NOvA has been shooting neutrino beams; it will switch to antineutrino beams in 2017. The two groups have agreed to produce a joint analysis and could together reach 3 sigma by around 2020, says Jung.
Reaching the statistical certainty needed to announce a formal discovery — 5 sigma — could require a new generation of neutrino experiments already being planned around the world.
Researchers from the NOvA experiment presented another exciting but preliminary finding at the ICHEP, also deduced from the study of the rate at which muon neutrinos switch to electron neutrinos: a hint at a resolution for which of neutrinos’ three different mass states is the heaviest.They found their results slightly favour a normal mass order, rather than an inverted one. Knowing which it is would help scientists to decide between rival theories about how the four forces of nature unite as a single force at high energies, such as during the Big Bang.
Physicists are racking up discoveries about neutrinos on an almost annual basis, says de Gouvêa: “For the timescales of particle physics, this is changing really, really quickly.” 
This article is reproduced with permission and was first published on August 12, 2016.

Mathematicians Are Overselling the Idea That "Math is Everywhere"

Most people never become mathematicians, but everyone has a stake in mathematics. Almost since the dawn of human civilization, societies have vested special authority in mathematical experts. The question of how and why the public should support elite mathematics remains as pertinent as ever, and in the last five centuries (especially the last two) it has been joined by the related question of what mathematics most members of the public should know.
Why does mathematics matter to society at large? Listen to mathematicians, policymakers, and educators and the answer seems unanimous: mathematics is everywhere, therefore everyone should care about it. Books and articles abound with examples of the math that their authors claim is hidden in every facet of everyday life or unlocks powerful truths and technologies that shape the fates of individuals and nations. Take math professor Jordan Ellenberg, author of the bestselling bookHow Not to Be Wrong, who asserts “you can find math everywhere you look.”
To be sure, numbers and measurement figure regularly in most people’s lives, but this risks conflating basic numeracy with the kind of math that most affects your life. When we talk about math in public policy, especially the public’s investment in mathematical training and research, we are not talking about simple sums and measures. For most of its history, the mathematics that makes the most difference to society has been the province of the exceptional few. Societies have valued and cultivated math not because it is everywhere and for everyone but because it is difficult and exclusive. Recognizing that math has elitism built into its historical core, rather than pretending it is hidden all around us, furnishes a more realistic understanding of how math fits into society and can help the public demand a more responsible and inclusive discipline.
In the first agricultural societies in the cradle of civilization, math connected the heavens and the earth. Priests used astronomical calculations to mark the seasons and interpret divine will, and their special command of mathematics gave them power and privilege in their societies. As early economies grew larger and more complex, merchants and craftsmen incorporated more and more basic mathematics into their work, but for them mathematics was a trick of the trade rather than a public good. For millennia, advanced math remained the concern of the well-off, as either a philosophical pastime or a means to assert special authority.
The first relatively widespread suggestions that anything beyond simple practical math ought to have a wider reach date to what historians call the Early Modern period, beginning around five centuries ago, when many of our modern social structures and institutions started to take shape. Just as Martin Luther and other early Protestants began to insist that Scripture should be available to the masses in their own languages, scientific writers like Welsh polymath Robert Recorde used the relatively new technology of the printing press to promote math for the people. Recorde’s 1543 English arithmetic textbook began with an argument that “no man can do any thing alone, and much less talk or bargain with another, but he shall still have to do with number” and that numbers’ uses were “unnumerable” (pun intended).
Far more influential and representative of this period, however, was Recorde’s contemporary John Dee, who used his mathematical reputation to gain a powerful position advising Queen Elizabeth I. Dee hewed so closely to the idea of math as a secret and privileged kind of knowledge that his detractors accused him of conjuring and other occult practices. In the seventeenth century’s Scientific Revolution, the new promoters of an experimental science that was (at least in principle) open to any observer were suspicious of mathematical arguments as inaccessible, tending to shut down diverse perspectives with a false sense of certainty. During the eighteenth-century Enlightenment, by contrast, the savants of the French Academy of Sciences parlayed their mastery of difficult mathematics into a special place of authority in public life, weighing in on philosophical debates and civic affairs alike while closing their ranks to women, minorities, and the lower social classes.
Societies across the world were transformed in the nineteenth century by wave after wave of political and economic revolution, but the French model of privileged mathematical expertise in service to the state endured. The difference was in who got to be part of that mathematical elite. Being born into the right family continued to help, but in the wake of the French Revolution successive governments also took a greater interest in primary and secondary education, and strong performance in examinations could help some students rise despite their lower birth. Political and military leaders received a uniform education in advanced mathematics at a few distinguished academies which prepared them to tackle the specialized problems of modern states, and this French model of state involvement in mass education combined with special mathematical training for the very best found imitators across Europe and even across the Atlantic. Even while basic math reached more and more people through mass education, math remained something special that set the elite apart. More people could potentially become elites, but math was definitely not for everyone.
Entering the twentieth century, the system of channeling students through elite training continued to gain importance across the Western world, but mathematics itself became less central to that training. Partly this reflected the changing priorities of government, but partly it was a matter of advanced mathematics leaving the problems of government behind. Where once Enlightenment mathematicians counted practical and technological questions alongside their more philosophical inquiries, later modern mathematicians turned increasingly to forbiddingly abstract theories without the pretense of addressing worldly matters directly.
The next turning point, which continues in many ways to define the relations between math and society today, was World War II. Fighting a war on that scale, the major combatants encountered new problems in logistics, weapons design and use, and other areas that mathematicians proved especially capable of solving. It wasn’t that the most advanced mathematics suddenly got more practical, but that states found new uses for those with advanced mathematical training and mathematicians found new ways to appeal to states for support. After the war, mathematicians won substantial support from the United States and other governments on the premise that regardless of whether their peacetime research was useful, they now had proof that highly trained mathematicians would be needed in the next war.
Some of those wartime activities continue to occupy mathematical professionals, both in and beyond the state—from security scientists and code-breakers at technology companies and the NSA to operations researchers optimizing factories and supply chains across the global economy. Postwar electronic computing offered another area where mathematicians became essential. In all of these areas, it is the special mathematical advances of an elite few that motivate the public investments mathematicians continue to receive today. It would be great if everyone were confident with numbers, could write a computer program, and evaluate statistical evidence, and these are all important aims for primary and secondary education. But we should not confuse these with the main goals and rationales of public support for mathematics, which have always been about math at the top rather than math for everyone.
Imagining math to be everywhere makes it all too easy to ignore the very real politics of who gets to be part of the mathematical elite that really count—for technology, security, and economics, for the last war and the next one. Instead, if we see that this kind of mathematics has historically been built by and for the very few, we are called to ask who gets to be part of that few and what are the responsibilities that come with their expertise. We have to recognize that elite mathematics today, while much more inclusive than it was one or five or fifty centuries ago, remains a discipline that vests special authority in those who, by virtue of gender, race, and class, are often already among our society’s most powerful. If math were really everywhere, it would already belong to everyone equally. But when it comes to accessing and supporting math, there is much work to be done. Math isn’t everywhere.

The views expressed are those of the author(s) and are not necessarily those of Scientific American.
Rights & Permissions

terça-feira, 9 de agosto de 2016

Tratamento para dependência química com ibogaína

O assunto vem se destacando em alguns canais de televisão, revistas e portais. Trata-se do tratamento para dependência química com ibogaína – princípio ativo de uma planta africana chamada iboga. Para muitos, é a esperança da cura. Já outros acreditam que é preciso cautela. Neste texto, você vai entender como funciona este tipo de tratamento.

O uso da ibogaína

O tratamento para dependência química com ibogaína começa 30 dias antes. É o tempo recomendado para que o adicto fique sem qualquer tipo de substância psicoativa: medicamentos, álcool e outras drogas.
Em uma clínica, o dependente químico toma a ibogaína e fica lá durante um período, pois o remédio provoca efeitos que podem durar até 48 horas. Pessoas que já fizeram o tratamento para dependência química com ibogaína relatam que veem uma retrospectiva de toda sua vida em uma espécie de sonho.  Após este período, eles garantem que não sentiram mais vontade de usar drogas.

Pesquisas sobre ibogaína

Uma pesquisa do Departamento de Psiquiatria da Universidade Federal de São Paulo (Unifesp) com 75 pacientes (usuários de crack, cocaína ou álcool), entre janeiro de 2005 e março de 2013, mostrou que há 61% de sucesso nos casos.

Riscos

Os estudos sobre a substâncias são considerados ainda escassos.  O que faz com que muitos especialistas prefiram optar pela cautela no tratamento da dependência química com ibogaína.
Mesmo aos que optam por se arriscar, sabe-se que não é um tratamento recomendado para cardíacos e portadores de alguns tipos de doenças neurológicas.

Preço da ibogaína

O tratamento para dependência química com ibogaína não é para todos os bolsos: os preços variam entre R$ 7.500 a R$ 30.000.
Vale ressaltar que é preciso ficar atento pois, trata-se de uma substância importada que requer autorização da Anvisa para a importação. Assim, não são todas as clínicas que realmente estão aptas a oferecer este tipo de tratamento.

Alternativa segura e econômica

No Brasil, existe uma alternativa segura e econômica. Trata-se da Cortexetina – um composto de agentes quelantes que promovem a limpeza do organismo, eliminando seletivamente as substâncias tóxicas. Não é preciso que o dependente químico esteja em abstinência para iniciar o tratamento, não precisa de internação e não há efeitos de alucinações.
Veja a comparação completa entre o tratamento para dependência química com ibogaína e o tratamento com Cortexetina: Tabela comparativa ibogaína x Cortexetina.